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Collective radiation and the near-zone field 

M Lewenstein and K Rzqiewski 
Institute of Theoretical Physics, University of Warsaw, 00-681, Warsaw, Hoza 69, Poland 

Received 16 August 1978 

Abstract. Collective radiation of several atoms represented by harmonic oscillators is 
analysed. When taking into account the near-zone field, we show that the existence of the 
super-radiant mode in the small-system limit is a rare phenomenon. Explicit calculations 
for four oscillators placed on the vertices of a tetrahedron are presented. Analogous results 
are obtained for two-level atoms in the case of small total excitation. 

1. Introduction 

Since the famous paper of Dicke (1954), a lot of work has been done on collective 
emission from a system of many sources. While the modern version of the theory deals 
usually with the pencil-shape sample, of dimensions large compared with the 
wavelength, for which propagation effects play a dominant role (e.g. Bonifacio and 
Banfi 1975), it is widely believed that in the small-sample limit the original Dicke’s 
description is valid. Namely, in such a limit, only a global dipole moment is coupled to 
the radiation; the lifetime of the excitation of this degree of freedom is N times shorter 
than the lifetime of a single atom and the excitations of all the other global modes of the 
system are trapped and cannot decay through radiative damping. Thissimple picture 
can be inadequate, as was suggested in the paper of Friedberg and Hartman (1974a, b) 
which dealt with a small spherical sample. Recently, this problem was studied for the 
spherical sample composed of charged harmonic oscillators by Zakowicz (1978). 
Essential for these studies was taking into account the near-zone field in the system, and 
longitudinal dipole-dipole forces in particular. 

On the other hand, there are a lot of papers studying the problem of two atoms. 
From the paper of Stephen (1964) it is known that proper collective broadening and 
narrowing of the emission line conform to a simple picture developed by Dicke. 

In our paper we consider the problem of emission from a system of charged 
harmonic oscillators and show that the situation found for two atoms is quite excep- 
tional and comes from the geometrical simplicity of the system. In § 2 the equations for 
the problem are derived and general properties of their eigenmodes are deduced. In § 3 
the system is further specified to four oscillators located on the vertices of a regular 
tetrahedron. This simple case can be studied in detail. In 9 4  it is shown that the 
analogous system of two- (or rather four-) level atoms behaves, to a good approxima- 
tion, like the system of oscillators if the total initial excitation is  small. 
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2. General remarks 

Consider a system of N identical, non-relativistic harmonic oscillators coupled to the 
electromagnetic field in the dipole approximation. We use the Coulomb gauge, so we 
have to take into account direct longitudinal dipole-dipole interactions of the oscil- 
lators. We assume that centres of harmonic potential are fixed and denoted by Ri. Our 
Hamiltonian takes the form 

where the f i  are displacements of charges from their equilibrium positions, 

Rij = IRi -Rjl, Eij =(El-Rj) / lR;-Rjl  
and a:&, a i w  are creation and annihilation operators of photons with definite wavevec- 
tor E and linear polarisation i.~. The creation and annihilation operators satisfy the 
commutation relations 

[a/&, a:,w’] = 8&w,8(3)(E-P) [a&, a:,,,] = 0. 

iii are velocity operators for oscillators, and they are related to the canonical momen- 
tum and the vector potential by 

iii = ( l /m)[pi  -eA(Ri ifi)]. 

We use them instead of canonical variables (or creation and annihilation operators for 
oscillators) because they possess a better physical sense-they are gauge independent 
and they are also proper source variables (Rzgzewski and Zakowicz 1976) (using them 
we can show the causality of all the radiative processes). The vector potential has the 
plane-wave decomposition 

and in the dipole approximation it is not taken at the actual position of the ith oscillator, 
but at the position of its centre. 

Self-interaction terms, which appear in our model, are ultraviolet divergent in the 
dipole approximation. We do not hope that one can remove this divergence by a 
satisfactory renormalisation procedure (‘runaways’, Norton and Watson 1959), so we 
introduce a very convenient tempering form-factor, replacing k-l’* in the vector 
potential, if necessary, by 

g ( k )  = [P/~(k*+P’)’’’l ,  
where p is of the order d- l ,  and d is oscillator size. 

The Heisenberg equations for Zi, iii, a iw and a r;, are 
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We solve this system of equations by performing Laplace transforms of i i E & ( t ) ,  azF(t),  
Z i ( t )  and iii(t),  and then after eliminating displacement and field operators we obtain a 
closed system of linear equations for i i i ( z )  (Zakowicz 1978). 

e 2  1 
= - ~ ; . f i ( O ) + ~ i i i ( O ) - -  1 7 [ . f j (O)-3( i i i j , t , (O)) i i i j ]  

m j#iRij 

e 
+iz- 21rm F. I dsk k g ( k ) Z c w ( ~ e x p ( i 6 1 ? i ) - H c ) .  

The RHS of (2) contains only initial data, i.e. initial displacements of oscillators, their 
velocities and the state of the field. The function H ( z )  is given by 

4 e 2  * 
k3g2(k) 

31rm ’10 z 2 + k 2 ’  
H ( Z ) = Z ~ + O ~ + - - Z  dk- 

and it is exactly the same as that obtained for the one-oscillator problem (Rzgzewski 
and Zakowicz 1976). H ( z )  is double valued; one branch is responsible for finding the 
evolution of one oscillator into the future, while the other one serves for the evolution 
into the past. Due to our choice of the form-factor the “future” branch has the simple 
form 

2 e2  p2  
3 m (z+p) ’  

H ( Z )  = z 2 + w o  +- -z2- 

which will be used in further calculations. H ( z )  has exactly three zeros: 

2 3  =-@(I + 2 e 2 p / 3 m ) ,  
z1,2=*iwo(1 - e 2 p / 3 m ) - e  2 2  oo/3m. 

‘ W O  

One of them (23) plays a role in the solution only for a very short time (T - p-’ << 
00’). Physical processes of damping, emission and scattering are connected with zeros 
z1 and z2.  Their real part gives the single-oscillator decay time 

70 = (Re ~ 1 , 2 / - ~  = 3 m / e 2 0 ; .  

The functions G(z ,  R) and F ( z ,  R) are given by 

G(z ,  R )  = ( e 2 / m R 3 )  e-”R(l + z R  + z 2 R 2 ) ,  

F ( z ,  R )  = ( e 2 / m R 3 )  e-’R(3 + 3zR + z2R2). 

The factor e-IR ensures retardation effects in the interaction. 
To obtain the time-dependent operators we have to perform an inverse Laplace 

transform, e.g. i i i ( t )  = Jr (dz/27ri) ezf+(z). The contour r lies parallel to the imaginary 
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axis in the complex z plane to the right of all singularities of integrands. We must know 
then the analytical properties of the z -dependent solutions. 

Our closed system of equations for iii(z) is a system of 3N linear equations: 
3N c A a p ( z ) q ( z ) = K , ( z ) ,  a , P =  1, . . . ,  3N, 

p=1 

where the matrix A ( z )  can be written in the form 

A ( z )  = H ( z ) I +  ( e 2 / m ) B ( z )  ( I  is the unit 3N x 3N matrix). 

We are especially interested in zeros of the determinant of the matrix A ( z ) ,  because 
they can produce the poles of r, (2). Generally, functions of the type det A ( z )  can have 
zeros of three types: 

(i) zeros lying far to the left of the imaginary axis, which are important only for a 
very short time (reconstruction of the transverse field in near wave zone); 

(ii) ‘modified’ zeros of H ( z ) ;  
(iii) zeros in the right half of the complex plane, which appear in the small-system 

We expect that only zeros of type (ii) contribute to the relatively slow processes 
described in this paper (Zakowicz 1978). The ‘modified’ zeros of H ( z ) ,  i 1 , 2  = z1,2 + 
to first order in the small parameter e2/m, satisfy the following secular equation of 
degree 3N: 

limit (all Rij + 0). 

(and complex conjugate for cZ). 

small-system limit: 
The following properties of the functions G(z,  R )  and F ( z ,  R )  are important in the 

1 e2wE 1 
G(iwo, R ) )  - - = - Rei- F( ioo,  R ) )  - 0. 

R - 0  TO 3m ’ 21w0 R+O 

One can now easily prove that to that order in e2/m and the small-system limit: 

(i) if the homogeneous mode (all i , ( t )  = Z ( t ) ,  i i , ( t )  = + ( t )  and total dipole moment is 
not equal to zero) is an eigenmode, then it is a super-radiant mode. 
Proof. The z-dependent eigenvalue of the Laplace transform of the coordinate of the 
homogeneous mode generally takes the form 

A h o m , h o m ( Z ) = H ( Z ) +  (G(Z, Rz,)-a~,F(z, Rd,)), 

and must be the same for all i. 
Zeros il,* = 21,2+ 

determinant) are given by 
of this eigenvalue (which are also the zeros of the whole 

2 iw0~1+ c (G(iw0, Rll) - allF(iw0, R , ) )  = 0, 
I # I  

(and cc for E ~ ) .  

So, in the small-system limit, 

1 
To 

Re = -(N - 1) -, 
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Re z1,2 is equal to the damping constant of this mode and is N-dependent. It reflects 
cooperative effects in the emission of radiation. It is obvious that the duration time of 
the radiation pulse (and also the lifetime for the oscillators) is then N times shorter in 
comparison with the corresponding time for one oscillator, i.e. if we prepare the system 
initially in a homogeneous mode we shall obtain a super-radiant emission. 

(ii) If the nonhomogeneous mode (ZKl  f i ( t )  = 0 and total dipole moment equal to 
zero) is an eigenmode, then it is a non-radiating mode. 
Proof. Again we construct the general form of a z-dependent eigenvalue: 

Anhom,nhom(Z)  = H ( z )  f (pijG(z, Rij)- 'YijF(z, Rij)), 
j # i  

and must be the same for all i. Coefficients p i j  satisfy Zj ,  pii = -1 in the small-system 
limit, because Z j z i  .fi = -,Ti for the nonhomogeneous mode. We obtain 

Re € 1 , ~  = 1/70, 

so we have radiation trapping in this case. 
(and 3N complex conjugate E" 

for E ~ ) .  Using the Vieta formulae for the equations of degree 3N and the fact that the 
trace Tr B ( z )  = 0, one can easily show that 

Re i1,2 = 0, 

In general, equation (3) has 3N solutions for 

3N 

"=l  
E a = O .  

This fact leads to the following statement valid in the small-system limit and to first 
order in e 2 / m :  

(iii) Solutions of (3) satisfy the following inequalities for all QI : 

- (N-l) /TOSRee"Sl/TO or -N/TOSRe ia SO. 

Proof. Consider any eigenvector of the matrix B(iwo). In general it has the form 

T = a(hom)+b(nhom), 

where (hom) and (nhom) are orthonormal homogeneous and nonhomogeneous 
vectors. If we put a2+b2 = 1, then if 

(e2/2iwom)~(iwo)n = - E ~ T  

- E  = (e2/2iwom)r. B(iwO)v, 
then 

where '.' denotes scalar product in a 3N-dimensional vector space. In the small-system 
limit only the terms coming from the function G(z ,  R )  contribute to the real part of E .  

We obtain 

- Re E = a2(N - 1 ) / T o  - b 2 / T o ,  

so 

R e €  = -Na2/T0+l/Tg3-(N-1)/T0 

and 

R e E = - ( N - 1 ) / 7 0 + b 2 N / T 0 ~ l / T 0 .  
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These inequalities reflect the fact that modified zeros of N ( z )  can lead neither to an 
antidamping effect nor to a faster than super-radiant effect. 

3. Specification of the system 

Consider a system consisting of four harmonic oscillators lying on the vertices of a 
regular tetrahedron. The system of equations for iii(z) now takes a simpler form, 
because of the fact that all Rii are equal (Rii = R) :  

H(z)ii i  + 1 [(G(z, R)-F(z ,  R)fiij 0 f i i j ) i i j ]= -w2OZi(O) 
j # i  

e2  +ziii(o)----?; 1 [(I-3fiij 0 fiij)Zj(O)] 
mR j # i  

e 
+iz- 

Because of the symmetry of our system we are able to diagonalise the matrix A(z) .  
Vectors ( ~ ~ ( 2 ) )  span the 12-dimensional representation of a symmetry group of a 
tetrahedron. Solutions belonging to the same k-dimensional invariant subspace trans- 
form according to some irreducible representation of the group. We can decompose 
our 12-dimensional representation into the irreducible representations, decomposing 
the character of this representation into the characters of irreducible representations 
(Hamermesh 1962), 

rosc = rl + r3 + 2r4 + r5, 
where rl is the character of the one-dimensional identity representation, r3 is the 
character of the two-dimensional representation, r4 is the character of the three- 
dimensional vector representation and T5 is the character of the three-dimensional 
pseudovector representation. Now it is easy to find eigenmodes and their electrostatic 
eigenfrequencies, given by the solution of the classical problem of four oscillators with 
dipole-dipole electrostatic interactions. They are as follows (eigenmodes are shown in 
figure 1): 

(a) ‘expansion’ (nonhomogeneous mode which transforms according to rl): 
w 2 = w g  +5e2/mR3 w =wo+$e2/mR 3 oo 

(b) ‘torsions’ (two-dimensional subspace, which transforms according to r3): 
w 2  = +ie2/mR3 w =wo+$e2/mR3wo 

(c) ‘rotations’ (three-dimensional subspace, which transforms according to T5): 
2 2 5 2  3 5 2  3 w =wo-Te /mR w=wo-ze /mR wo 

(d), (e) -we still have a six-dimensional subspace left. In the electrostatic problem 
this subspace can be decomposed into two three-dimensional subspaces of time- 
independent eigenvectors, given by linear combinations of two modes: homogeneous 
(d) and nonhomogeneous (e) (see figure 1). 

Thus we have two classical frequencies, 

w 2  = “2 + ( 1  +&)e2/4mR3, w =wo+ 1.19e2/mR3wo, 
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. 

Figure 1. Eigenmodes for the tetrahedron problem: (a) ‘expansion’, (b) ‘torsion’, (c) 
‘rotations’, (d) and (e) coupled homogeneous and nonhomogeneous modes. 

and 

u2=ui  +(1-d%)e2/4mR3,  0 ~ - w ~ - Q * 9 4 e ~ / m R ~ ~ ~ .  

In a dynamical problem we still have the coupling between these two modes, but the 
eigenvectors become time-dependent. 

It is clear from previous results that the modes (a), (b) and (c) in a small-system limit 
are non-radiative and have a damping constant equal to zero. Their frequency shift 
consists of the shift which is an electrostatic collective modification of an eigenmode 
frequency, and the radiative collective shift. They are given by zeros of the determinant 
of A ( z ) :  

el  =-(-2F(iwo, 1 R)+G(ioo ,  R ) )  (and cc for € 2 ) .  
2 1 0 0  

(a) 

In the small-system limit and to first order of e 2 / m  

e2woP 5 e 2  +- 3 -) e 2 u o  - o ( R ~ ) .  
2 1 , 2 2 * 1  WO-- +- ~ *( 3m 2 R 3 m o o  4 Rm 

In the small-system limit, 

1 
2 1 0 0  

el  = -(G(iwo, R)+iF( iwo ,  R) ) ,  (4 

and, in the small-system limit, 

+ o ( R ~ ) .  e2woP 5 e 2  
;1,2=*1 WO---- ~ *( 3m 4 m R 3 w 0  
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The coupling between the modes of types (d) and (e) takes the form 

where qhom(qnhom), Vhom(Vnhom) deqote the generalised coordinate and velocity of the 
homogeneous (nonhomogeneous) mode. 

We find four zeros of the determinant of this system to the first order of e’/m. They 
are 

212 = 21,2 + €1.2, 23,4 = 21.2 + €3.4, 

where 

1 
= - [ - 2G(iwo, R )  +iF(iwo, R )  

41Wo 

f (16G2(iwo7 R )  - 12G(iwo7 R)F(ioo, R )  +yF2(iwo, R))’”] 

and complex conjugate for 62.4. In the small-system limit we obtain 

1 2 

0.06 ““) - 2-23 -, eZwop+ 1.19 ____ e2  
~ R ~ u ~  mR To  

e2 e2wo 1 
mR wo mR To  
3- 0.57 -) - 1.77 -. 

Damping constants are, roughly speaking, two times smaller than they would be in the 
super-radiant emission. 

We have supposed that the system was prepared in such a way that initially only the 
homogeneous mode was excited, and we have analysed numerically its time-evolution. 
It is obvious that after some time the coupled nonhomogeneous mode is excited. The 
energy of the oscillations flows between two modes and is not strictly radiated out of the 
system. The period of this flow is given by the difference of the imaginary parts of il and 
i3 (in fact it is a simple superposition of the damped oscillations with different 
frequencies). The period of the flow is much smaller than the lifetime of oscillators for 
small R, becomes of the order of the lifetime for R = l / w o 7  and then becomes much 
bigger than the lifetime, so the nonhomogeneous mode has not enough time to gain 
energy, Damping constants (real parts of 21, i 3 )  become equal to l /rO (the single- 
oscillator damping constant) for R much bigger than l /wo .  Figure 2 shows the 
time-dependence of the radiation intensity. 

Similar results can be obtained for a problem of three oscillators lying on the vertices 
of an equilateral triangle. Figure 3 shows the corresponding eigenmodes. Their 
frequencies and damping constants are, to the first order in e 2 / m ,  as follows: 

(a) homogeneous eigenmode: 

cl = -(1/2iwo)2G(iwo, R) ,  
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(b) two nonhomogeneous eigenmodes: 

el  = (1/2iwo)G(iwo, R ) ,  

\ ’ Ot\ 

\ 
\ 

Figure 2. Radiation intensity as a function of time and the distance between oscillators. Io - 
maximal intensity of the single-oscillator radiation; Ro = l / w o  = h o / 2 r  where ho is a 
single-oscillator wavelength; To = ~ ~ / 2 .  

I 

I 

LL lei 

I 

A ( f l  

Figure 3. Eigenmodes for the equilatorial triangle problem: (a) homogeneous eigenmode, 
(b) two nonhomogeneous modes, (c) ‘expansion’, (d) ‘rotation’, (e) and (f) coupled homo- 
geneous and nonhomogeneous modes. 
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and in the small-system limit 

e2woP 1 e’ +- 1 -)-0(R2).  e2wo 
i 1 , 2 = * 1  WO---- ~ *( 3m 2mR3w0 4 mR 

(c) ‘expansion’: 

1 
21wo el = +-(G(iwo, R)-$F(iw,,  R) ) ,  

i 1 , 2 = * i  w o - - + - ~ + - - ) - O ( R 2 ) .  e2woP 7 e’ 5 e2wo 
’( 3m 4 m R  W O  8 mR 

(d) ‘rotation’: 

= (1/2iwo)(G(iwo, R )  +$(ioO, R)) ,  

e2w0P 5 e 1 e2wo 
i 1 , 2 = * 1  *( w O  3m 4mR3w0 -+- 8 -)-O(R’). mR 

(e) and (f) coupled homogeneous and nonhomogeneous modes: 

F(iwo’ R)i (9G2(iwo, R )  
2 

-9G(iwo, R)F(iwo, R )  +?F2(ioo, R))’/’], 
1 

0.55 - e’wo) - 2-17 70) 

+0.18 -) -0.83 --. 
mR 7 0  

e’ 
mR 

e2wg 1 

4. Equations of the four-level atoms system 

In this section we shall discuss briefly the case of more realistic atoms. To obtain a nice 
rotational structure for an atom we shall consider four-level atoms rather than two-level 
ones. We assume that their ground level is an s state (denoted by 1 -)) while the excited 
level is a p state degenerated with respect to the magnetic quantum number m = k l ,  0. 
Instead of using eigenstates of L,, we use the states and I+ )=  for which a 
matrix element of a dipole moment ( + 121 -)  of an atom is parallel to the directions of x, 
y, z respectively. 

We describe our system by the Hamiltonian in the dipole approximation with the 
p .  coupling, and we take into account dipole-dipole interactions between atoms 
(longitudinal part of the electric field). 

The Hamiltonian takes the form 
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where i, j denote the ith, jth atom, 

a3 = c I +>an(+ I - I ->( - I  
a 

is an operator of the energy of a free atom, 

6 = (aX, uy,  a")  

an =I-)d+l 
and 

is an operator which changes the upper state 1 +)a into the ground state. d denotes the 
value of the dipole moment of the transition considered. 

Inspired by the Wigner-Weisskopf (Weisskopf and Wigner 1930) approximation, 
extending the considerations of Milloni and Knight (1974), we restrict ourselves to the 
subspace of states spanned by the following orthogonal vectors: 

ii, a )  = i -). . .I - > I  
energy E = -&N - 2)w0, 

IC P )  = I - ). ' * I  - )I 1.64, 

- >  I ->I%,d, 
ith atom 

energy E = k - Nuo f 2, 

E =  k - ( N - 4 ) ~ 0 / 2 .  

In a semiclassical Bloch picture it corresponds to the small oscillations of the Bloch 
vector around its equilibrium position. Using this subspace, the A' term produces 
merely a small shift of the photon frequency, so we shall neglect it. 

We analyse the time evolution of the state: 

19(t)>=C bP(t)li, ~ > + c  I d3kb(k; P, OIk; P )  
1,a 

+ ,  1 1 [ &kc;'(k; p, i)li, a, j ,  P,  1k; w ) ,  
1,n,1,@ kL 

i < j  

using the Schrodinger equation and orthogonality properties. Equations for the 
time-dependent coefficients take the form 
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C,j(k:. p, t )  = -i(k -(N -4) wO/2)c;’(&, p, t ) - ( d w o / 2 ~ & ) e f F b ? ( t )  exp(-ikEj) 

k f j  

We then perform Laplace transforms and eliminate b(k; p, 2) and c z P ( k ;  p, z ) ,  
restricting ourselves to the terms of second order in the coupling constant duo.  We do 
not have to solve difficult equations for b(k; p, z )  and c$?(k; p, z) exactly-in fact we 
need only first-order solutions (i.e. technically we neglect ‘mixed’ terms of order d 2 w i  
in the equations for b(k; p, z )  and c;’(&, y, 2)). Finally we obtain a closed system of 
linear equations for bq(z ) ,  which can be written in the form 

6 ( z )  = ( b ; ( z ) ,  bY(Z),  b f ( z ) ) ,  

[(g(z, Rij)-f(z, RijIEij 0 ~ij)b;.(z)I h(z )b i ( z )+  
j # i  

The function h ( z )  is similar to the one obtained in the one-atom problem, and it is given 
by 

h ( Z )  = 2 - 1  - 
, N - 2  k2g(k)’ dk 

2 

k2g(k)2 dk 
z + i(k - (N - 4)w0/2) 

2 2 &  +-d - ( 3 N - 3 )  
3 7 2  

where we introduced the form-factor g(k)  bccause of the divergence of the self- 
interaction terms. The functions g(z, R ) ,  and fez, R )  have the form 

g( t ,  R )  = i ?+- 

and 

k dkg(k, R )  d 2 w i  k dk g(k, R )  loa z +i(k - N w 0 / 2 ) + 7 i  lo z +i(k -(N-4)wo/2) ;f2 
sin kR cos kR sin kR 

kR k2R k3R3’  
g(k, R)=- +--- 

1 + 1 f ( z ,  R )  = 3i?+- 
R r r  z+i(k-Nwo/2) z+i(k-(N-4)wo/2)  

and 

sin kR 3cos kR 3sin kR 
k3R3 ‘ 

-- f(k, R)=- + 
kR k2R2 

Now we make the so-called pole approximation i.e. we neglect the z-dependence in the 
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integrals appearing in h ( z ) ,  g(z, R )  and f(z, R ) ,  putting 

z = i(N - 2)w0/2 + E ,  (small E > 0). 

We can then perform the integrals in g ( z ,  R )  andf(z, R )  exactly. The term coming from 
static dipole-dipole interactions of atoms is cancelled by the pole l / k  in the integrals. 
To obtain h ( z )  we use the formula l / (x  i i e )  = P( l /x)+i r6(x) .  We then obtain 

. N - 2  k2g2(k)dk 2 
h ( 2 )  = z -1- WO-1- ':d:"lom - k F w o  + - d  3 0 0  2 

-i3(N-1)-- 
2 d2w8p jom k2g2(k) dk 
3 T  k + o o  ' 

d 2  
R g(z,R)=-i~exp(- iooR)(1+iooR-w20R2),  

d 2  
R f(z, R )  = -i 7 exp( -iooR)(3 + 3iwoR - w;R2). 

To find the time evolution we have to perform an inverse Laplace transform, so again 
we are interested in zeros of the determinant of our system of equations for b;:(t). If we 
identify the decay constant for a single atom Td o0 with that for an oscillator e2wi /3m,  
it is clearly seen that g(z, R )  and f ( z ,  R )  in this approximation are exactly equal to those 
obtained in the oscillator problem with z = iwo: (1/2iwo)G(ioo, R ) ,  (1/2ioo)F(iwo, R) .  
The function h ( z )  gives the energy shift of the state li, a )  and also its lifetime (which is of 
course equal to the lifetime of a single excited atom). The total energy shift of this state 
consists of N - 1 shifts A- of the energy of the ground state of a single atom and one shift 
of the energy of the upper state A+. 

A- is three times bigger than the shift for two-level atoms obtained for instance by 
Ackerhait and Eberly (1974), because there are three (and not one) intermediate states 
in the proper self-energy diagrams in our case. 

Note, however, that A+ does coincide with the conventional expression because our 
model has a non-degenerate ground state. If we put 

2 2 3  

~o= i (N-2)wo/2+ i (N- l )A-+ iA"-1 /~0 ,  

then our equations can be written in the form 

This is exactly the same system of equations as vie obtain in the oscillator problem if 
we neglect the z-dependence of G(z, R )  and F i t ,  R),  i.e. if we seek zeros of the 
determinant of this system restricted to terms of up to second order in the coupling 
constant. So all the results that we obtain for oscillators are valid for atoms, if we 
consider only low excitations over a ground state of the system. 
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